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On the effects of a gravitational field on the turbulent 
transport of heat and momentum 
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This paper suggests a simple way of including gravitational effects in the pres- 
sure-containing correlations that appear in the equations for the transport of 
Reynolds stress and heat flux. The predicted changes in structure due to the 
gravitational field are shown to agree closely with Webster's (1964) measurements 
in a stably stratified shear flow. 

1. Introduction 
There is currently much activity in developing turbulence closures based on 

approximated sets of transport equations for the - Reynolds stresses uiui and, 
where appropriate, for the heat-flux correlations uiT'. This is the simplest level 
of closure a t  which one may hope to account for the effects of external force 
fields on the turbulence without the need to introduce ad hoc modifications. More- 
over, from the computational point of view, it happens to be the most com- 
prehensive kind of model that can be handled at present in making numerical 
computations of practically important flows. Thus second-order closures seem 
to offer the one kind of turbulence model with the prospect of becoming both 
adequately general and tolerably simple. 

and uiT' contain several 
correlations of fluctuating quantities that cannot be represented exactly. Of these 
the pressure-strain correlation in the equation and the pressure-temperature 
correlation in the heat-flux equation are of decisive importance. For simple shear 
flows in the absence of force fields, three independent researches (those reported 
by Naot, Shavit & Wolfshtein 1973; Lumley & Khajeh Nouri 1973; Launder, 
Reece & Rodi 1975) have led to virtually identical proposals for the pressure- 
strain correlations, so an encouraging unanimity is emerging. However, when 
force fields are present (and, in the case of the pressure-temperature correlation, 
even for simple flows) there has been so little comparison of computation with 
experiment that all proposals must be regarded as tentative. 

In  considering the problem of turbulence affected by buoyancy, most workers 
have assumed there is no direct influence of gravity on the important pressure- 
containing correlations in the stress and heat-flux equations (e.g. Lumley 1972; 
Donaldson, Sullivan & Rosenbaum 1972; Daly 1972). The present note argues 
that such an influence should in fact be included; a generalization of a simple 
model used by Launder et al. (1975) in computing a number of non-buoyant 
thin shear flows is shown to give approximately the correct effects. 

- 
Of course, the exact transport equations for 
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2. Analysis 

uiT' in a turbulent fluid may be written as 
The equa,tions governing the transport of Reynolds stress and heat flux - 

Dt 
generation by shear generation by buoyant 

forces 

viscous pressure 
dissipation scrambling 

diffusive tmnsport 

mean-field generation buoyant 
generation 

dissipation pressure diffusive transport 
scrambling 

where upper and lower case u's  denote fluctuating and mean velocities, T and T' 
fluctuating and mean temperatures, p the mean fluid density, p the instantaneous 
pressure fluctuation about its mean value, gi the component of gravitational 
acceleration in the direction xi and a the dimensionless volumetric expansion 
coefficient of the fluid. Apart from the neglect of molecular diffusion, the above 
transport equations are a direct consequence of the equations of motion and 
the first law of thermodynamics. However, apart from generation terms, a1 1 
the processes affecting the level of Z& and uiT' introduce unknown correla- 
tions of fluctuating quantities. These, of course, need to be approximated in 
terms of the main dependent variables in order to close the equations. Here 
it is the pressure scrambling terms in the two equations to which attention is 
mainly given. 

First, notice that taking the divergence of the momentum equation for ui pro- 
duces the following Poisson equation for the pressure fluctuation : 

- 

(2 .3 )  

Equation (3 .3 )  shows that pressure fluctuations arise from three agencies: from 
purely turbulence interactions, effects due to mean strain and the effects of 
temperature fluctuations in a gravitational field. It seems reasonable, therefore, 
that approximations for the correlations containing p should mirror these three 
contributions to the level of pressure fluctuations. 

Let us for the moment consider the approximation of the pressure-strain 
correlation in (2 .1)  for the case of non-buoyant flows. Recently, Launder et al. 
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( 1  975), having made calculations of a number of free shear flows using a closed- 
form approximation of (2.1), concluded that the following simple form produced 
approximately the right effect of the pressure-strain interaction: 

The scalar quantities E ,  P and E are respectively the turbulence kinetic energy +=, its rate of generation by mean strain and its rate of dissipation by viscous 
action. Pii is an abbreviation for the mean-strain generation rate of in 
(2.1) and the coefficients c1 and c2 are taken as constants. The two terms on 
the right side of (2.4)) the first composed of correlations of just fluctuating 
quantities and the second coiitainingmean-strain terms, may be taken as approxi- 
mating the effects of the first two terms on the right side of (2.3). 

The ‘turbulence interaction’ part of (3.4) was due originally to Rotta (1951), 
who argued that ‘ collisions ’ among the energy-containing eddies would promote 
a return to isotropy at  a rate proportional to the prevailing level of anisotropy. 
The second term in (2.4) was first proposed by Naot, Shavit & Wolfshtein (1970) 
(though, rather curiously, as a replacement for Rotta’s term, not as an additional 
contributor). The idea is that pressure fluctuations induced by mean strain will 
act to make the production tensor more isotropic - a plausible enough idea. 
Direct support for the form adopted is provided by the more comprehensive 
analyses of Launder et al. (1975) and, particularly, of Naot et al. (1973). The 
mean-strain part of (2.4) emerges from these analyses as the leading, and sub- 
stantially the most important, term of more complicated expressions for 

Although Rotta (19511, Townsend (1954) and numerous workers since have 
shown the importance of mean-strain influences on the pressure-strain correla- 
tion, many of the proposals for closing (2.1) have included only the first term in 
(2.4) (the omission can be disguised over a narrow range of flows by suitably 
increasing the magnitude of cl). Not surprisingly, t,herefore, the same forms were 
carried over for use in buoyant shear flows (e.g. Lumley 1972; Donaldson 
et al. 1973). However, once one accepts that mean-strain generation should appear 
in the approximation of PaUdaXj, it  is difficult not to conclude that generation 
terms arising from buoyancy should be included. A rational extension of (2.4) 
to the case of buoyant flow, the main proposal of the present note, is that .€&. 
and P should now be taken to stand for the total generation of Ti& and k due to the 
combined effects of shear and buoyancy, i.e. 

and I (2.5) 
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Consistently, the same practice is adopted in approximating t,he pressure 
scrambling term in the uiT’ equation. Nearly every worker who has made 
closure approximations for ( 2 . 2 )  has assumed that 

- 

- 
(aT’/axi) = - C I T ( + )  u p .  (2.6) 

This is the counterpart of the first term on the right side of (2.4) and again neglects 
gravitational and mean-strain effects on p .  In  parallel with (2.4), therefore, (2.6) 
is modified to - 

At this point let us note that formally 

( p i p )  aTyaX, = - clT(+) u i ~ ‘  - CZTPiT, 

--- 
Du,T’ uiDT’ T’Du, 

f- Dt Dt Dt 
-- -- 

(2.7) 

and that pressure fluctuations appear only in the transport equation for u,, 
not T‘. Accordingly, eT is interpreted as the generation of uiT’ arising from 
the term T’Du,/Dt, i.e. 

- 

In  $ 3  the implications of (2.4) and (2.7) are compared with experimental data 
in a near-equilibrium shear flow where transport effects on the stresses and heat 
fluxes should be negligible. If, therefore, transport terms are neglected in (2.1) 
and the dissipative motions are assumed isotropic, i.e. 

aui a@. 
ax, ax, 

2v----3 = gsij&, (2.9) 

the following simple algebraic expression emerges for the Reynolds stress : 

where# = (1 -c,)/cl. 
The value of q5 may be obtained from the very carefully generated (isothermal) 

homogeneous shear flow of Champagne, Harris & Corrsin (1970). The experi- 
ments suggest that 3, the streamwise normal stress, is approximately 0.931’~. 

(W- &,k)/k = #(p i j  - $PJii)/€, (2.10) 

Thus from (2.10) - 
(ut- !k)/k = A# 3 (2.11) 

and therefore the value of q5 is taken as 0.20. There is of course no necessity for 
present purposes to prescribe c1 and c2 separately; however it is of interest to note 
that, with c2 given the value 0-6 (implying c1 = 2.0), equation (2.4) exactly 
satisfies Crow’s (1968) result for the sudden distortion of isotropic turbulence, 
viz . 

(2.12) 

We now obtain the counterpart of (2.1) for the heat-flux equation. In  parallel 
with the treatment of (2.1) we neglect transport terms in (2.2) and assume iso- 
tropy of the fine-scale motion. Thus 

aT’ aui 
(h+Y)- -  = 0. ax, axk (2.13) 
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Now, the buoyancy term in ( 2 . 2 )  contains w, which remains as an unknown 
at present. Following Monin (1965) this quantity is obtained by equating the 
generation and dissipation rates of Y i :  

h - - = - Z T '  aT' aT' aT 
axk' k axlc ax, (2.14) 

The dissipation rate is then assumed to be proportional to ~ T ' ~ / l k  and hence the 
following equation for the temperature fluctuations emerges : 

(2.15) 

The coefficient c& is chosen by reference to the decay of temperature fluctuations 
behind a grid. Gibson & Schwarz (1963) found that the level of varied in- 
versely as the three-halves power of distance behind the grid. Moreover a consen- 
sus of turbulence energy data in grid turbulence suggests that k decays as the 
- 1.2 power of distance. It may be shown that these two decay laws imply that 
c& should equal approximately 1.6 (i.e. (1.2/1.5) x 2 ) .  

With all the above simplifications introduced, the following formula emerges 
for the heat flux in equilibrium flows: 

where $T = i / C I T  and $9;. = $T(l  - c Z T ) .  The empirical coefficients and cZT 
are estimated by reference to Webster's (1964) nearly homogeneous shear flow 
(nominally the same flow as that examined by Champagne et al. (1970) but with 
the temperature increasing linearly with height) under essentially non-buoyant 
conditions. Under the stated conditions (2.16) gives the following equation for 
the heat flux in the direction of the temperature and velocity gradients: 

(2.17) 

so the group - kUi/CITE has the significance of an effective thermal diffusivity. 
Use of this equation to eliminate the mean temperature gradient from (2.15) 
yields T'zL/;TTG = 0- 63/c1 T .  (2.18) 

Webster's data imply that the correlation on the left side of (2.18) is approxi- 
mately 0.2;  accordingly the value adopted for cIT is 3.2. - 

The equation for the streamwise heat flux - u1 T' takes the form 
- k -aT i - c 2 T ~ 7 a u l  

-uIT' = -U u -+-- u3T -. 3 a ~ 3  E ax, 
Division of (2.19) by (2.17) leads after some manipulation to 

- 
ulT' -3 1 - c z T  k -- -- - +-=. 
u3T' ug ' I T  u1u3 

(2.19) 

(2 .20)  

Webster's measurements suggest that within narrow limits this correlation is 
close to unity when gravitational effects are negligible. With t,he value deduced 
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FIGURE 1. Dependence of normal-stress ratios on flux Richardson number. 
1/11, band of Webster’s data. 

above for cIT and those given by (2.10) €or G / k  and G / k ,  it  is found that cZT is 
approximately 0.5 (the precise value adopted); that is, according to the present 
proposals, 50 % of the heat flux generated by mean strain and buoyant actions 
is directly removed by pressure fluctuations. 

3. Some implications for horizontal buoyant flows 
Attention is now given to the effects of buoyancy on the turbulent flux. The 

co-ordinate x3 is vertically upwards with the velocity U, and temperature vary- 
ing only with z3. Under these conditions (2.10) implies the following formulae for 
the normal-stress components : 

- 

(3.1) 

u:/k = 0.94 + 0*41Rf/( 1 - Rf), 
ug/k = 0.53, 

u$/k = 0.53-0.41Rf/(l-Rf), 

- 

- 

where Rf is the flux Richardson number, i.e. the rate a t  which turbulence energy 
is removed by working against the gravitational field divided by the rate at which 
it is created by mean shear. 

Figure 1 compares the variation of the normal stresses with Rf according to 
(3.1) and Webster’s (1964) experimental data. 
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From (3.1) a stable gravitational field leads to a relative? gain in the level of 
streamwise fluctuations at the expense of the vertical ones. The relative magni- 
tude of the lateral fluctuations is unaffected. These features are generally in 
accord with Webster's measurements. It ought to be said that Webster feared 
that his data never attained equilibrium; certainly this may be the case for the 
separation of the normal stresses a t  R, = 0 is substantially less than that obtained 
by Champagne et al. (1970). The level of agreement between predicted and mea- 
sured behaviour is thus probably satisfactory. 

Let us note that, a t  the other extreme, in a very unstable flow where R, is 
large and negative, the ratios of the normal stresses are as follows: 

- - -  
uZ , :  u;: U: = 0.53: 0.53:0*94. 

That is, the relative stress levels of u", and 2 are exactly reversed from their 
non-buoyant values. 

Let us now examine t'he equations for the non-zero shear stress and heat 
fluxes given by (2.10) and (2.16). I n  (2.16) we now replace q5; by @T since cZT 
is taken as 0.5. 

- k2aul ~,T'gk 
-u1u3 = q5---q5a- e ax, eT ' 

where g denotes the acceleration due to gravity. Equation (3.4) may be directly 
rearranged as follows: - - ui Ic aT 

e ax,' 
-u T' I y-- 

3 (3.5) 

and B, a dimensionless buoyancy parameter, is defined by 

While, from a computational point of view, B is a more useful parameter than 
R, (since B alone affects the value of y), it contains quantities that  are not usually, 
nor easily, measured in buoyancy-affected turbulence. Equation (3.6) is there- 
fore modified t o  bring the flux Richardson number into prominence. First, 
the mean temperature gradient is eliminated by use of (3.5), and thus 

Now it is readily shown that 

t The absolute magnitude of k ,  and likewise of the individual stress components, will 
diminish, however. 
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Thus, after eliminating k/z by means of (3.1), noting that P and E are equal for 
the case considered and rearranging (3.8) to give an explicit formula for y, there 
results 

y = #,( 1.59 - 5*22R5)/(1*59 - 2.82Rf). (3.9) 

From (3.9), the value of y falls to zero when Rfreaches 0.305, which seems satis- 
factorily close to the value of 0.35 reported by Webster (1964). 

To assist study of the equations for the shear stress and horizontal heat flux, 
a dimensionless coefficient /3 is introduced: 

Equation (3.3) may then be recast as 
- u k a T  

-ulT‘ = @ T ( 1 + 0 * 5 y / / 3 ) E -  
E ax,’ 

(3.10) 

(3.11) 

- 
and, in turn, (3.11) is used to eliminate ulT’ from (3.2). After some manipulation 
the result may be expressed as 

P = #/[I + # M I +  0. W / P )  BI. (3.12) 

Then, on dividing (3.12) by (3.6) and noting that the quantity Ply is more 
usually called the turbulent Prandtl number ut, we may obtain 

at = %{[l + #T(0.8-- 0-5&) BI/P + ##TB)). (3.13) 

crto stands for #/#T, which equals the turbulent Prandtl number under non- 
stratified conditions; for the present values of the empirical coefficients crto = 0.63, 
which is indeed typical of the values of the turbulent Prandtl number found in 
non-buoyant free shear flows. 

From (3.13) it is seen that as B tends to infinity, that is under strongly stable 
conditions, a, tends to 0*8/#T - 0.5, so the turbulent Prandtl number is about 
2.0. Thus vertical momentum transport is inhibited rather less severely by the 
gravitational field than is the vertical heat flux. The measurement of crt is 
always rather imprecise because of the large amount of data processing needed. 
Webster’s data a t  two different sections gave values differing by a factor of two 
though the variation with Richardson number was nearly the same for the two 
cases. Figure 2 therefore shows the variation of crt/ato as a function of the local 
‘gradient ’ Richardson number Ri ( = at Rf); agreement between experiment and 
prediction is as close as may be expected in the circumstances. 

The temperature-velocity correlation coefficients are easier to measure. From 
(2.15) and (3.5) it is readily deduced that 

- 

while, by introducing (3.5) and (3.10) into (3.11), we obtain 

(3.14) 

(3.15) 
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FIGURE 2.  Turbulent Prandtl number in a stably stratified flow. 
O,., Wobster’s dataat  two stations. 

The predicted correlation coefficients for the vertical and horizontal heat 
fluxes are shown in figures 3 (a )  and ( b ) ,  comparison again being made with Web- 
ster’s data. For stable flow the calculated coefficient for the vertical heat flux 
falls steeply as Ri increases while that for u1 T’ rises gradually. The behaviour is 
again in line with experiment. Although the present model is strictly inapplic- 
able to flows near walls (because of the neglect of the influence of a wall on the 
pressure scrambling terms in (2.1) and (2.2)) it is known that these correlation 
coefficients are relatively unaffected by the presence of a wall. Some experi- 
mental results by Zubkovsky & Tsvang (1966, reported by Yaglom 1969) 
obtained in unstable conditions in the lower regions of the atmospheric boundary 
layer have therefore been included in figures 3 (a )  and ( b ) .  The predicted varia- 
tion shows the same trends as the measurements, though the experimental data 
suggest a slightly greater dependence of the correlation coefficients on Ri than 
is implied by the model. This small discrepancy could well be due to the presence 
of the ground. 

The final two figures bring out the different effects that a stable buoyancy 
field has on the momentum and heat transport processes. It is seen from figure 4 
that the shear-stress correlation coefficient is virtually constant for Ri up to 
0.25. In  contrast the ratio -u3T‘fulT’, shown in figure 5, falls from 0.9 under 
neutral conditions to 0.4 over the same span of Richardson numbers. As in the 
earlier comparisons, Webster’s experimental data, though understandably 
showing scatter, certainly support the behaviour predicted by the model. 

- 

-- 

37 F L M  67 
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FIGURE 3. Variation of ( a )  vertical and ( b )  horizontal heat-flux correlation coefficient with 
Richardson number. 0, a, Webster’s data at  two stations; a, Zubkovsky & Tsvang 
(1966) ; bars indicate range of recorded values. 
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FIGURE 4. Shear-stress correlation coefficient in stably stratified flow. 
0, , Webster's data at  two stations. 
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FIGURE 5. Ratio of vertical to horizontal heat flux in a stably stratified flow. 
0, Webster's data. 
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4. Concluding remarks 
The main proposition of the present note is that one of the actions of pressure 

fluctuations in a turbulent flow is to make the effective stress- and heat-flux- 
generation tensors more isotropic. Although no direct experimental confirmation 
is available, the linear hypothesis assumed in the analysis leads to predicted 
effects of buoyancy on the turbulence structure in general agreement with the 
trends measured by Webster (1964). The extension of the present proposal to 
the case of other kinds of force fields is obvious. 

The most apparent limitation of the model is that it  applies only to flows 
remote from walls. The presence of a horizontal wall diminishes vertical velocity 
fluctuations (and enlarges those parallel to the mean flow). Consequently, the 
critical Richardson number is lower; almost certainly less than 0.1 in near-wall 
flow (e.g. Nichol 1970) and only about 0.15 in the core region of a pipe (e.g. 
Ellison & Turner 1960) where the flow is still significantly under the influence of 
the wall (cf. Bradshaw 1973; Launder et al. 1975). For the same reason, the ratio 
- u1Tf/.u3T’ for wall turbulence is about 3.0 under neutral conditions compared 
with the value of 1.1 in the present work. 

-- 

The author is grateful to Dr T. H. Ellison for pointing out an incorrect deduc- 
tion in the manuscript. 
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